### Page Content

### to Navigation

# Preprints

T. Piotrowski and R. L. G. Cavalcante (2021). Fixed points of monotonic and (weakly) scalable neural networks. *arXiv preprint arXiv:2106.16239*

T. Piotrowski and R. L. G. Cavalcante (2021). The fixed point iteration of positive concave mappings converges geometrically if a fixed point exists. *arXiv preprint arXiv:2110.11055*

M. Frey, I. Bjelakovic and S. Stanczak (2020). Towards Secure Over-The-Air Computation. *Submitted to Problems of Information Transmission. Preprint available at arXiv:2001.03174*

# Books

S. Stanczak, M. Wiczanowski and H. Boche (2009). Fundamentals of Resource Allocation in Wireless Networks. *volume 3 of Foundations in Signal Processing, Communications and Networking. Springer, Berlin, 2009*. Springer, Berlin.

S. Stanczak, M. Wiczanowski and H. Boche (2006). Resource Allocation in Wireless Networks - Theory and Algorithms. *Lecture Notes in Computer Science (LNCS 4000). Springer, Berlin, 2006*. Springer, Berlin.

# Book Chapters

Stańczak, Sławomir and Keller, Alexander and Cavalcante, Renato LG and Binder, Nikolaus (2021). Long-term Perspectives: Machine Learning for Future Wireless Networks. *Shaping Future 6G Networks: Needs, Impacts, and Technologies*. John Wiley & Sons.

D. A. Awan, R.L.G. Cavalcante, M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection. *Machine Learning for Future Wireless Communications*. Wiley & IEEE Press, 15.

R. Freund, T. Haustein, M. Kasparick, K. Mahler, J. Schulz-Zander, L. Thiele, T. Wiegand, and R. Weiler (2018). 5G-Datentransport mit Höchstgeschwindigkeit. *book chapter in R. Neugebauer (Ed.), "Digitalisierung: Schlüsseltechnologien für Wirtschaft und Gesellschaft" (pp. 89–111). Berlin, Heidelberg (2018)*

G. Wunder, M. Kasparick, P. Jung, T. Wild, F. Schaich, Y. Chen, G. Fettweis, I. Gaspar, N. Michailow, M. Matthé, L. Mendes, D. Kténas, J.‐B. Doré, V. Berg, N. Cassiau, S. Pietrzyk, and M. Buczkowski (2016). New Physical‐layer Waveforms for 5G. *book chapter in "Towards 5G: Applications, Requirements and Candidate Technologies'', Wiley, 2016, Eds. Rath Vannithamby and Shilpa Telwar*

S. Maghsudi and S. Stanczak (2015). Communications in Interference-Limited Networks. *chapter Distributed Channel Selection for Underlay Device-to-Device Communications: A Game- Theoretical Learning Framework. Springer International Publishing, 2015*. Springer International Publishing.

M. Goldenbaum, S. Stanczak and H. Boche (2015). Communications in Interference-Limited Networks. *chapter Interference-Aware Analog Computation over the Wireless Channel: Fundamentals and Strategies. Springer International Publishing, 2015*. Springer International Publishing.

R. L. G. Cavalcante, S. Stanczak and I. Yamada (2014). Cooperative Cognitive Radios with Diffusion Networks. *chapter Cognitive Radio and Sharing Unlicensed Spectrum in the book Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, UK, 2014*, 262-303.

I. Bjelakovic, H. Boche and J. Sommerfeld (2013). Capacity Results for Arbitrarily Varying Wiretap Channels. *In: Aydinian H., Cicalese F., Deppe C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg*

I. Bjelakovic, H. Boche, G. Janen and J. Notzel (2013). Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities. *In: Aydinian H., Cicalese F., Deppe C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol. 7777. Springer, Berlin, Heidelberg*

S. Stanczak and H. Boche (2005). Towards a better understanding of the QoS tradeoff in multiuser multiple antenna systems. *Smart Antennas–State-of-the-Art*. Hindawi Publishing Corporation, 521-543.

# Journal Publications

Nicola Kleppmann and Johannes Dommel and Dennis Wieruch and Stefan Erben (2021). 5G and NOA: Enabling access to valuable hidden data. *atp!info Magazin*

M. A. Gutierrez-Estevez, M. Kasparick and S. Stanczak (2021). Online Learning of Any-to-Any Path Loss Maps. *IEEE Communications Letters*

J. Dommel, Z. Utkovski, O. Simeone and S. Stanczak (2021). Joint Source-Channel Coding for Semantics-Aware Grant-Free Radio Access in IoT Fog Networks. *IEEE Signal Processing Letters*

F. Molinari, N. Agrawal, S. Stanczak and J. Raisch (2021). Max-Consensus Over Fading Wireless Channels. *IEEE Transactions on Control of Network Systems, Jan. 2021*

Stojkoski, Viktor and Karbevski, Marko and Utkovski, Zoran and Basnarkov, Lasko and Kocarev, Ljupco (2021). Evolution of cooperation in networked heterogeneous fluctuating environments. *Physica A: Statistical Mechanics and its Applications*. Elsevier, 125904.

Taghizadeh, Omid and Stanczak, Slawomir and Iimori, Hiroki and De Abreu, Giuseppe Thadeu Freitas (2021). Full-Duplex Amplify-and-Forward MIMO Relaying: Design and Performance Analysis Under Erroneous CSI and Hardware Impairments. *IEEE Open Journal of the Communications Society*. IEEE, 1249–1266.

Miretti, Lorenzo and Cavalcante, Renato Lu'\is Garrido and Sta'nczak, Slawomir (2021). Channel Covariance Conversion and Modelling Using Infinite Dimensional Hilbert Spaces. *IEEE Transactions on Signal Processing*. IEEE, 3145–3159.

Frey, Matthias and Bjelaković, Igor and Stańczak, Sławomir (2021). Over-the-Air Computation in Correlated Channels. *IEEE Transactions on Signal Processing*, 5739-5755.

Fink, Jochen and Cavalcante, Renato Luís Garrido and Stańczak, Sławomir (2021). Multi-Group Multicast Beamforming by Superiorized Projections Onto Convex Sets. *IEEE Transactions on Signal Processing*, 5708-5722.

Fink, Jochen and Cavalcante, Renato Luís Garrido and Stańczak, Sławomir (2021). Multi-Group Multicast Beamforming by Superiorized Projections Onto Convex Sets. *IEEE Transactions on Signal Processing*, 5708-5722.

# Conference, Symposium, and Workshop Papers

Citation key | agosIcassp2020 |
---|---|

Author | P. Agostini, Z. Utkovski and S. Stanczak |

Year | 2020 |

ISBN | 978-1-5090-6631-5 |

ISSN | 2379-190X |

Location | Barcelona, Spain |

Journal | ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4-8 May 2020 in Barcelona, Spain |

Month | May |

Editor | IEEE |

Organization | 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |

Abstract | Channel charting (CC) is an emerging machine learning framework that aims at learning lower-dimensional representations of the radio geometry from collected channel state information (CSI) in an area of interest, such that spatial relations of the representations in the different domains are preserved. Extracting features capable of correctly representing spatial properties between positions is crucial for learning reliable channel charts. Most approaches to CC in the literature rely on range distance estimates, which have the drawback that they only provide accurate distance information for colinear positions. Distances between positions with large azimuth separation are constantly underestimated using these approaches, and thus incorrectly mapped to close neighborhoods. In this paper, we introduce a correlation matrix distance (CMD) based dissimilarity measure for CC that allows us to group CSI measurements according to their co-linearity. This provides us with the capability to discard points for which large distance errors are made, and to build a neighborhood graph between approximately collinear positions. The neighborhood graph allows us to state the problem of CC as an instance of an Euclidean distance matrix completion (EDMC) problem where side-information can be naturally introduced via convex box-constraints. |